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Abstract
In the present work we study the defect states in recently synthesized
semiconductor quantum dot–quantum well systems (QDQWs). We employ
the effective-mass theory (EMT) with a realistic barrier and variable effective
mass. The model is simple and all of our results are obtained by an exact
numerical diagonalization of the Schrödinger equation. We study the ground
state of the host system as a function of quantum well size. We demonstrate that
the upshift with QDQW downsizing differs from reported upshifts in simple
quantum dots (QDs) and explain this by means of a perturbative analysis. We
study the binding energy of the hydrogenic impurity and its variation with
QDQW size. Next the binding energy is studied as the impurity is moved
off-centre. We find that the binding energy goes through a maximum. An
analysis of the wavefunction is carried out to obtain an understanding of this
surprising effect. The impurity calculations are carried out on CdS/HgS/CdS
QDQWs. Recently, experimental studies on a monolayer of HgS in a CdS dot
were carried out. We model this system as a ‘δ-defect’ consisting of a thin
spherical shell of fixed potential depth in a spherical CdS dot. The ground
state of this system is studied as the shell is dragged from the periphery to the
centre of the CdS dot. Our results are explained on the basis of qualitative
arguments and asymptotic analyses. Outstanding issues and future directions
are suggested.

1. Introduction

Semiconductor nanocrystallites, more popularly known as quantum dots (QDs), have been
studied for over two decades. The system is interesting from the point of view of basic physics
since the carriers are confined to an essentially ‘zero’-dimensional structure. The efficient
luminescence observed in some of these crystallites makes them promising candidates for use
in opto-electronic devices. Further, the inexorable drive towards smaller and ever smaller
devices makes them technologically significant. Besides the size miniaturization, surface
effects are also known to influence the optical properties of these nanometre particles [1]. To
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suppress surface effects, inorganic passivation has been utilized where the nanocrystals have
been covered with a high-band-gap material [2]. Such a system, known as a quantum dot–
quantum well system (QDQW), has more efficient fluorescence. The study of impurity states
in low-dimensional heterostructures is technologically important. There are many theoretical
and experimental works devoted to study of defect states in QDs but there are hardly any
studies of defects in QDQWs. In this paper we aim to study some interesting features of
QDQWs and, mainly, the properties of defect states in them.

We first briefly survey the field of impurity states in QDs. The study of impurity states
in low-dimensional heterostructures is an important aspect, to which many theoretical and
experimental works have been devoted. Experimental work in connection with impurities in
semiconductor nanostructures is preliminary and is of recent origin [3–5]. The first calculations
on the binding energy of hydrogenic impurities in a quantum well were reported by Bastard
[6]. He found that the binding energy depends both on the position of the impurity and on the
well thickness. This work was followed by several others [7, 8]. The past two decades have
witnessed several developments in the synthesis of quantum dots (QDs). This attracted the
attention of some workers towards hydrogenic impurities in QDs. Zhu compared calculations
for the binding energy of the hydrogenic impurity in a QD with that in the two-dimensional
quantum well. He found that the binding energy is larger in a QD [9]. Chuuet al [10] reported
the hydrogenic impurity states in quantum dots and quantum wires using an exact solution
of the Hamiltonian. Porras-Montenegro and Perez-Merchancano [11] studied the hydrogenic
impurity in QDs. Theirs was a variational calculation for impurities in GaAs/Al1−xGaxAs.
The same group later reported the density of states of the impurity [12]. Ribeiro and Latge
[13] compared the same for the cubic dots with that for a spherical QD. They also studied the
effect of dimensionality and shape of quantum dots. Zhuet al have also reported the D0 and
D− donor states in a QD [14]. The effect of intense laser field on hydrogenic impurities in
quantum dots was studied by Fanyaoet al [15]. They found that the intense field effectively
shifts the impurity from the centre of the QD to some off-centre position. In a recent work Zhu
et al [16] have investigated the influence of dot size and potential shape on the binding energy
for a hydrogenic impurity in a quantum dot. Charrouret al have investigated the effect of
magnetopolarons in cylindrical quantum dots [17]. In a detailed analysis carried out recently,
we [18] have shown that the binding energy of the impurity undergoes a shallow-to-deep
(SHADE) transition as the dot size is reduced. In other words a nominally shallow level in
the bulk is likely to become deep in the QD. If, further, one takes into account the dependence
of the dielectric constant on the size (ε = ε(R)), then the binding energy becomes deeper
still. Thus there is every likelihood of carrier ‘freeze-out’ [18]. The work in this field is still
continuing and our references above are only representative. Finally we note that the confined
hydrogen atom has been studied as an academic curiosity for quite some time [19].

The field of QDQWs is nascent. A QDQW is a heterostructure, composed of two different
semiconductor materials. Eychmüller and co-workers [20, 21] were the first to synthesize
QDQWs. The wet chemical synthesis, the characterization, and some linear and non-linear
optical properties of QDQWs have recently been reported in detail [20, 21]. It has been
shown that the linear absorption of QDQWs differs significantly from that of the constituent
materials. The band gap can be tuned by core diameter and the well thickness. Hauset al [22]
showed that the band gap of the composite material depends on both the core and shell radii.
Effective-mass theory (EMT) has been used to successfully describe the electronic properties
of this system [23–26]. To the best of our knowledge no work on an impurity in a QDQW
system has been reported.

In the next section (section 2) we explain the model that we have developed for QDQWs
and sketch the basic theory that we have adopted in achieving this task. Similar models were
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discussed earlier in the literature and this brief discussion on the model is included here for the
sake of completeness and to establish our notation. We discuss the behaviour of a QDQW host,
i.e. a QDQW without impurity. We find that the ground-state energy of a QDQW decreases as
the well thickness (HgS layer thickness) is increased for a given dot (the inner CdS core) size.
However, the gradient of the ground-state energy versus QDQW size curve is at variance with
that for a bare quantum dot. We explain this behaviour by means of a perturbative analysis.

In section 3 we present our calculation for defect states in a QDQW. We have performed
calculations for the hydrogenic impurity at the centre of a QDQW and find that the binding
energy increases monotonically as the well size is decreased for a given dot size. Next the
hydrogenic impurity is shifted off-centre, and we find that first, the binding energy increases
monotonically and then, after attaining a maximum, it starts decreasing for given dot and
well sizes. We can explain this surprising feature by examining the wavefunction and by
simple qualitative arguments. Finally we calculate the ground-state energy of the CdS/HgS
system with the HgS layer being grown within the CdS QD at different positions between the
surface and the centre of the QD. The HgS consists of a single monolayer and the system may
be viewed as a thin spherical defect shell in a spherical CdS host. This is reminiscent of a
delta-doped semiconductor system [27]. We label this exotic arrangement a ‘δ-defect’ system.
Some of our results are compared with recently reported experiments [2]. We also explain the
results on the basis of perturbative and asymptotic analyses.

The last section (section 4) encapsulates our conclusions. Experimental tests for our work
and future directions for research are indicated.

2. Host QDQWs

We consider a spherical semiconductor nanocrystallite heterostructure of dot sized = 2R (see
figure 1). We study the effect on impurity level of the finite size of the nanocrystallite. The
defect in our model is at the origin, i.e. at the centre of the nanocrystallite (figure 1). The
Hamiltonian of the hydrogenic level in such a crystallite is described in effective-mass theory
by the following equation:

H = − h̄2

2
�∇ ·

(
1

m∗(�r)
�∇
)

− e2

εr
+ V (�r). (2.1)

For a position-dependent mass the appropriate Hermitian kinetic energy operator is given by
the first term on the right-hand side of equation (2.1) [28]. The nanocrystallite consists of
several layers of different materials. The core of such heterostructures is called the quantum
dot (QD) and the several layers of shells covering the QD are called quantum wells (QWs). The
electron effective masses in different layers are different as they consist of different materials.
The electron effective mass inside the QD (mi) is different from the effective mass in the shell
(mo). It is useful to define a parameter,β, which is the ratio of the effective masses:

β = mi

mo

. (2.2)

The second term in the Hamiltonian is the impurity potential, wheree is the charge on an
electron andε is the relative dielectric constant of the material. In figure 1 the appropriate
potential for describing the QDQW is depicted. From left to right one sees the core (QD) for
r � Rd, the first shell (well 1) forRd � r � Rw1, and well 2 forRw1 � r � Rw2. The exact
values of these potentials depend on the band offset, i.e. the difference between the conduc-
tion band minima of the two different materials. The potentialV (r) in equation (2.1) is given by
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Figure 1. The left-hand side of the figure depicts a spherical quantum dot–quantum well system
(QDQW). In the figure we have shown three layers of material. In general there can be any number
of layers of different materials. The inner core is called the quantum dot and the shell surrounding
the inner core is like a quantum well. Here in this figure we have shown a dot surrounded by
two wells, well 1 and well 2. The dot radius isRd and the radius of the heterostructure up to the
first well is Rw1, and up to the second well isRw2. There is an impurity at the centre of this
heterostructure. We have represented it byI in this figure. On the right-hand side of the figure we
have modelled the heterostructure by a potential diagram. The conduction band minima (CBM)
and valence band maxima (VBM) of the dot, well 1, and well 2 are shown in the diagram. We can
see in the diagram that there is a conduction band offset for different layers. The impurity level is
shown bound to the conduction band minima by a small binding energy.

V (r) =



V1 r � Rd

0 Rd � r � Rw1

V2 Rw1 � r � Rw2.

(2.3)

HereV2 is a large positive potential and represents the dielectric coating surrounding the
nanocrystallite. Typically a nanocrystallite is surrounded by dielectrics such as glasses,
polymers, organic solvents, or oxides and hydrides [29]. The electron is in a spherically
symmetric well.

As mentioned earlier, the electron effective massm∗ assumes different values in different
layers of the heterostructures. Contrary to the suggestions made in standard quantum
mechanics textbooks regarding the continuity of the first derivative of the wavefunction across
the boundary, we apply the BenDaniel–Duke [28] boundary condition for the heterostructures
under study. The condition now reads

1

mi

dRnl

dr

∣∣∣∣
r→R−

= 1

mo

dRnl

dr

∣∣∣∣
r→R+

. (2.4)

As demonstrated in a previous work [1], a point of some significance is the issue of applying
the boundary condition to the partial wavefunction or the full wavefunction. It is shown there
that applying the boundary condition to the partial wavefunction is manifestly incorrect when
we use the modified boundary condition. In the above equation (equation (2.4))Rnl is the full
wavefunction. The partial wavefunction is given byunl(r) = rRnl . Here we have used the
full wavefunction in all our calculations. In the above paragraphs we have explained a general
framework within which we can define a nanostructure heterostructure, sometimes called a
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heteronanostructure for short. We have used this model to study the host QDQW and defect
states in the QDQW.

We have carried out calculations for the ground-state energy of a carrier in a QDQW.
Such systems have generated a lot of interest in recent times. The model that we have
used for this calculation has been defined in section 2. We have solved the Hamiltonian
(equation (2.1)) numerically (see appendix A) on a grid, using the Runge–Kutta–Fehlberg
method. We have adopted a finer mesh near the potential discontinuity. The program
consistently provides both fast and stable results. We have cross-checked our results with
the predictor–corrector approach. The Hamiltonian in equation (2.1) without the impurity
potential term is used to solve this problem. We have solved our problem for the electron
ground state. In regions whereEnl > Vq , the solution of the Schrödinger equation, equation
(2.1), is given in terms of well known spherical Bessel and Neumann functionsjl andnl:

Rnl,q = Anl,qjl(knl,qr) + Bnl,qnl(knl,qr) (2.5)

with

knl,q =
√

2m∗
q(Enl − Vq)

h̄2 . (2.6)

Vq is the value ofV (r) in different layers of the QDQW as defined in equation (2.3),q denoting
different layers of the QDQW, andmq is the effective mass of an electron in regionq. Enl is
the CBM energy.

In regions whereEnl < Vq , the solution is a linear combination of two Hankel functions
hl

(+) andhl
(−):

Rnl,q = Cnl,qh
(+)
l (iκnl,qr) + Dnl,qh

(−)
l (iκnl,qr) (2.7)

with

κnl,q =
√

2m∗
q(Vq − Enl)

h̄2 . (2.8)

A, B, C, andD are constants.
A word on the nomenclature. We have used the term ‘conduction band minimum (CBM)’

and the ‘ground state of the carrier’ in a QDQW interchangeably. Recognizing the discrete
nature of the energy spectra in a QD, many workers have termed this state the lowest unoccupied
molecular orbital (LUMO) or simply the ground state. However, the term conduction band is
also employed in this field [30, 31]. Moreover, the use of bulk-related terms such as ‘gap’,
‘band’, and ‘CBM’ is fairly common in the field of QDQWs [22, 23, 25, 26].

We have performed our calculations for the CdS core and HgS shell surrounded by a
dielectric medium. The effective mass of the electron is taken to be 0.2me and 0.036me in
CdS and HgS, respectively. The dielectric constant is taken as 5.5 and 11.36 respectively for
CdS and HgS. The bulk band gap of CdS is 2.5 eV and that of HgS is 0.5 eV. The conduction
band offset is 1.35 eV. Hence the value ofV1 in equation (2.3) is 1.35 eV. In the dielectric
medium we have taken the electron effective mass to be the free-electron mass (me) and the
dielectric constant to be unity. The above-mentioned parameters have been taken from Chang
and Xia [24].

The ground-state energy of the QDQW is plotted as a function of core and shell radii in
figure 2. Each curve in the figure is for a fixed core radius (Rd), i.e. a fixed dot size, and varying
radii of the QDQW (Rw), i.e. varying well sizes. The solid line on the extreme right is for the
largest CdS dot radius that we have considered. The QD radius here is 23.5 Å. The dashed
line on the extreme left in the figure is for the smallest dot radius that we have considered.
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Figure 2. This plot shows the conduction band minima as functions of the CdS/HgS QDQW
radiusRw. HereRd is the radius of the dot (see figure 1). Each curve is for a fixed dot radius
but varying well thickness. As the well size is increased the CBM lowers, in conformity with the
quantum confinement model. However, the curvature of each of these curves is opposite to that
for a single dot.

The QD radius here is 5.5 Å. For each of these QD sizes (Rd) we have done calculations for
well thicknesses"(=Rw − Rd ) varying from 1 Å to 12 Å. As the well thickness is reduced
from 12 Å to 1 Å we see that the CBM for the QDQW increases and becomes equal to the
CBM for the QD of the relevant size.

If we compare the trend of rising ground-state energy with that of the ground-state energy
for simple quantum dots [1], we find that the curvatures for these are opposite to each other.
The ground state rises with a steep slope at small QD size for a quantum dot. On the other
hand, when the well size is reduced to zero, the ground state of a QDQW approaches that of a
QD asymptotically with almost zero slope as seen in figure 2. This may explain the difference
in curvature between the two cases, QD and QDQW, and hence the incumbent trend for the
rise in energy.

It would be interesting to verify this trend experimentally. There appears to be some
indirect evidence for it. Mewset al [21] have charted the 1s–1s transition (CBM to VBM)
of a CdS/HgS/CdS QDQW with varying HgS layer thickness. These experiments could be
extended to verify our prediction.

We also adopt a perturbative approach to explain this trend in a QDQW. We assume that
the entire QDQW is composed of CdS only. Hence we solve for the ground-state energyE of
a CdS QD of sizeRw surrounded by a dielectric. As is known from quantum confinement [1],

E ≈ C/Rγ
w (2.9)

whereC is a constant and the exponentγ is between 1 and 2. Hence

dE

dR
= −Cγ

R
γ+1
w

.

Thus the ground-state energy rises steeply with a negative slope at smallRw. Next we introduce
a perturbationVp (=−V1) of thickness" (= Rw −Rd ) at the edge of CdS QD of sizeRw. In
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this region of perturbation we use all the parameters (effective mass, dielectric constant, etc)
of HgS described above. This is equivalent to taking the HgS layer as a perturbation to a CdS
inner core. The perturbation Hamiltonian which is defined over the ranger ∈ [Rd,Rw] can
be written, in atomic units (¯h = 1,me = 1/2), as

Hp =
[

1

m∗
1

− 1

m∗
2

]
d2

dr2 + Vp (2.10)

Ep = 4πA2
[
k2

µ
+ Vp

] ∫ Rw

R−d

sin2(kr) dr (2.11)

wherem∗
1 and m∗

2 are the effective masses of the electron in the CdS and HgS layers,
respectively. We solve this problem in the limit of an infinite barrier provided by the dielectric
coating. If we assume the sinusoidal form for the ground-state wavefunction for a carrier
inside the CdS QD, then the perturbative energy (Ep) is given in atomic units by

Ep = 4πA2
[
k2

µ
+ Vp

] [
"

2
− sin(2kRw) − sin(2kRd)

4k

]
(2.12)

where 1/µ = 1/m∗
2 − 1/m∗

1 andk2 = m∗
1E, andE is given by equation (2.9). For the case

under consideration,µ is positive. In the above equation,A is the normalization constant for
the wavefunction in a QD. In the limit of an infinite barrier, the quantities described above
approach the following limits:A2 → 1/(2πRw), k → π/Rw ⇒ sin(2kRw) → 0. Hence,

Ep = 2

Rw

[
π2

µR2
w

+ Vp

] [
"

2
+

sin(2kRd)

4k

]
. (2.13)

In the limit of small"(Rw ∼ Rd), k" � 1,

sin(2kRd) = sin(2k(Rw − ")) ≈ − sin(2k") = −(2k") +
(2k")3

6
+ · · · . (2.14)

The ground-state energy (CBM) of the CdS/HgS QDQW will be given by the sum of
E(=C/R

γ
w) and the perturbative energyEp. We need to examine the dependence ofEp

on" since the unperturbed part does not explicitly depend on". Hence,

Ep ≈ 2

Rw

[
π2

µR2
w

+ Vp

](
1

3

π2

R2
d

)
"3

(2.15)
∂Ep

∂"
→ 0 as" → 0.

The assumption of smallk" implies thatRw is close toRd. Usingk → π/Rw, we obtain
Rd < Rw < 1.4Rd . The expression within the square brackets is dominated byVp = −V1
and is, hence, negative for largeRw. To be more specific,Rw > π/

√
µV1. For the parameters

under consideration, the above asymptotic analysis holds ifRw � 20 Å. Thus equation (2.15)
shows that in the limit of well thickness approaching zero, we get the expected behaviour as
depicted in figure 2.

3. Defects in QDQWs

In this section we report calculations for defect states in a QDQW. We have completed this
exercise for three different types of defect: (i) on-centre hydrogenic impurities; (ii) off-centre
hydrogenic impurities; and (iii)δ-defects in a quantum dot. The aim is to calculate the binding
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Figure 3. This plot shows the binding energy of an impurity at the centre of the CdS/HgS QDQW
as a function of QDQW radiusRw. HereRd is the radius of the dot (see figure 1). Each curve is
for a fixed dot radius but varying well thickness. We can see that the defect level gets deeper as
the well thickness is lowered. Here we do not observe any shallow–deep (SHADE) transition.

energy of these systems, and to provide explanations and possible experimental tests. The
impurity binding energy (Eb) defined as

Eb = Ec − Ei (3.1)

is the difference between the CBM level of the host (Ec) and the impurity level (Ei).
First we perform calculations for the binding energy of a hydrogenic impurity at the

centre of the QDQW. The sizes of the core and shell are the same as for the calculation of the
ground-state energy (Ec) of the QDQW described in the previous section.

We have solved the Hamiltonian (equation (2.1)) numerically (see appendix A). The
method of solution is similar to the one described in section 2. We have included the
complete Hamiltonian with the impurity potential, equation (2.1), to solve this problem.
These calculations have been performed for the CdS/HgS QDQW. The parameters for this
system are the same as those described in the previous section. In figure 3 we can see that
the impurity binding energy rises as the shell thickness is reduced. It rises further when the
core radius is also reduced. The calculations are done for given dot sizes with varying well
thickness. As the well thickness is reduced, the impurity wavefunction gets more confined
and as a result becomes deeper. This leads to the rise in the binding energy. When the dot
size is reduced the confinement effect is further increased and that leads to even deeper levels.
The impurity Bohr radius plays an important role in determining this feature. CdS has a very
small impurity Bohr radius. The other important effect that can be noticed is the fact that the
impurity wavefunction is mostly confined in the well. Hence the confinement effect is much
larger when the well size is reduced, while it is less affected by the changes in the dot sizes.
For an impurity in a QD we have found that the binding energy attains a maximum and then
falls as the QD size is reduced. We have termed such shallow–deep behaviour ‘SHADE’. In
contrast to the shallow–deep transitions (SHADE) observed for impurities in quantum dots,
the impurity binding energy rises monotonically for a QDQW.

We have also performed calculations for the off-centre hydrogenic impurity in a CdS/HgS
QDQW. In our calculation we have used a QDQW with fixed core size (Rd = 32 Å) and an
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Figure 4. The binding energy of the off-centre hydrogenic impurity in a CdS/HgS QDQW (of
fixed sizeRw = 37 Å) with fixed core size (Rd = 32 Å) and well thickness as a function of the
impurity position (RI). The shallow impurity becomes deep when the impurity is moved away
from the centre of the QDQW towards the well. As the impurity is moved further outwards, it
becomes shallow. An attempt to explain this intriguing shallow–deep (SHADE) transition is made
in the text.

overall QDQW sizeRw = 37 Å. We move the impurity away from the centre of the QDQW
and calculate the binding energy of this off-centre impurity as a function of the impurity
position within the QDQW. We see in figure 4 that as the impurity is shifted away from
the centre, the binding energy becomes deep. This is in contrast to what is seen in QDs.
There the binding energy becomes shallow as an impurity is shifted away from the centre
[12]. In figure 4 we have shown plots for off-centre impurities for three different core and
well sizes in a CdS/HgS QDQW. We can see that the binding energy is 130 meV when the
impurity is at the centre of the QDQW and becomes as large as 170 meV when the impurity
is shifted away from the centre. As the impurity in a QDQW is shifted further towards the
well, the binding energy becomes shallow again. We observe a shallow–deep transition.
We proffer a simple explanation for this behaviour based on the analysis of the impurity
wavefunction inside the QDQW. When the impurity is at the centre of the QD,
the impurity wavefunction is well confined within the QD itself. As it is shifted away
from the centre, the wavefunction overlap with the HgS well becomes larger and this leads to
the relaxation of this wavefunction inside the well and the lowering of the impurity level. As it
is shifted further, the wavefunction starts sensing the well–dielectric barrier. This leads to the
confinement of the wavefunction by the QDQW. Hence the impurity level is again upshifted
which leads to the small binding energy.

In a recent publication [2] the significance of growing a layer of a semiconductor material
within a quantum dot composed of a different material has been discussed. Quantum dots
show efficient photoluminescence but surface states play a very important role in these
low-dimensional strongly confined systems. Carrier trapping at surface states may lead to poor
photoluminescence. Hence it was felt [2] that if a well of a semiconductor material different
from that of the QD is grown over the dot, it may lead to more efficient photoluminescence.
We have performed a calculation for the ground-state energy of this system. The system can be
described as a monolayer of HgS grown within a CdS QD. The monolayer can be treated as a
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Figure 5. The ground-state energyE of a CdS/HgS QDQW host when the HgS layer is grown in
the CdS QD. This is depicted as a function of the HgS layer position inside the CdS core.RHgSis
the distance from the centre of the dot to the mid-point of the HgS layer thickness of 5.82 Å. We
observe that the ground-state energy goes through a minimum as the HgS layer is dragged from
the periphery towards the centre of the spherical system.

‘δ-defect’ in a QD in analogy with the well known ‘δ-doping’ in semiconductor literature [27].
We have performed our calculation for the ground-state energy of this system as a function of
the position of the HgS monolayer within the QD of a given size. The well is grown not only
at the surface of a QD but also inside the QD.

The ground-state energy of the CdS QD of sizeRw = 35 Å is 1.464 eV. In figure 5
we see that the ground-state energy is downshifted even when a monolayer of HgS
(thickness= 5.82 Å) is grown at the surface of the CdS QD. When the HgS layer is shifted
inward the ground-state energy is further shifted down. The ground-state energy shows a
minimum approximately when the HgS layer is in the middle of the QD. When the HgS layer
is further shifted towards the centre of the QD, the ground-state energy starts shifting up again.
As a result of the HgS layer grown in the CdS QDQW, the probability density in the attractive
HgS layer becomes substantial. This leads to a downshift of the ground-state energy. Since
the probability density is a maximum towards the middle of the QD, we can expect this effect
of lower ground-state energy to be large halfway between the QD centre and the edge. The
probability density is again less towards the centre of the QD, the effect is less dominant and
we see that the ground-state energy starts rising again. Hence we observe a shallow–deep
transition (SHADE) in the QDQW too, as had been noticed earlier in QDs. We can explain
this effect by an asymptotic analysis along lines similar to the perturbative analysis developed
in the previous section. The only difference is that the perturbation potential is not at the
surface but at some point inside the CdS QD of sizeRw. It is placed betweenR1 andR2 inside
the QD. For this case equation (2.13), above, gets modified to the following:

Ep = 2

Rw

[
k2

µ
+ Vp

] [
"

2
− sin(2kR2) − sin(2kR1)

4k

]
(3.2)
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with " = R2 − R1 being the HgS layer thickness andRw the size of the QDQW. In actual
calculations we have taken" equal to one monolayer of HgS, i.e. 5.82 Å. We rewrite the last
term in the above equation:

sin(2kR2) − sin(2kR1)

4k
= sin(2k(R1 + ")) − sin(2kR1)

4k
≈ "

2
cos(2kR1). (3.3)

Substituting equation (3.3) withR1 = Rw/2 in equation (3.2), we get

Ep = 2

Rw

[
k2

µ
+ Vp

]
". (3.4)

Since the term within the square brackets is negative in this case, this clearly demonstrates
that there is a minimum in the ground-state energy whenR1 = Rw/2. In figure 5 we see that
the ground-state energy can reduce by as much as 0.2 eV. If we include a calculation for the
ground-state energy of holes as well as excitonic corrections, then we may expect a substantial
reduction in the band gaps of such composite systems, even by the introduction of a mere
monolayer of HgS in CdS. Koberlinget al [2] have claimed in their work a downshift of the
absorption onset and emission frequency by almost 1 eV upon embedding a single atomic
monolayer of HgS in CdS nanocrystallite. It should be possible to extend their work and verify
the non-monotonic behaviour depicted in figure 5.

4. Discussion

Quantum dots (QDs) have opened up new possibilities in the device world. However, surface
effects are known to dominate in such nanophase materials. The quantum dot–quantum
well system (QDQW) has recently been proposed as an exciting remedial choice for such
materials. The field is nascent, being less than a decade old. Starting with the pioneering work
of Eychm̈uller and co-workers [20, 21], the synthesis, characterization, and some linear and
non-linear optical properties of QDQW have been studied. It has been shown that the linear
absorption of QDQW differs significantly from that of the constituent materials. Thus ‘the
whole isnot the sum of the parts’. The band gap can be tuned by core diameter and the well
thickness. Hauset al [22] demonstrated that the band gap of the composite material depends
on both the core and shell radii. Effective-mass theory (EMT) has been used successfully
to describe the electronic properties of this system [23–26]. To the best of our knowledge
theoretical work on defect states in a QDQW system has not been reported.

We have employed the EMT for all of our calculations. Time and again, the validity of
EMT for systems as small as a QD has been questioned. EMT-based calculations over the
past decade and a half claim to be in agreement with experiment. Quantum confinement and
band upshift in semiconductor nanocrystallites were first predicted on the basis of EMT. More
recently it has been claimed that EMT calculations match well with experimental results on
QDQWs [23]. We believe that precise quantitative predictions based on EMT cannot be made.
On the other hand, our contention is that the essential physics and trends may be extracted
from EMT. More importantly, a theoretical consensus can be arrived at by critically examining
results based on a variety of methodologies: EMT, the semi-empirical linear combination of
atomic orbitals (LCAO), and the local density approximation (LDA).

There are at least two results in this paper which can be verified by experiments. Figure 2
indicates that the curvature of the upshift in a QDQW is opposite to that in a QD.
Figure 5 suggests the existence of a minimum as the HgS quantum well is dragged from
the periphery of the CdS quantum dot. In fact certain experimental observations [2] provided
the motivation for the work leading to figure 5. We have labelled the system described in
this figure aδ-defect QDQW. Band-gap engineering has been discussed by workers in the
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context of alloy and low-dimensional semiconductor structure [32]. In the context of our work
on theδ-defect (figure 5) we suggest a novel type of ‘defect engineering’ for semiconductor
nanostructures.

Our work should be extended in several ways. Excited states of the hydrogenic impurity
must be charted in terms of the QDQW size and other parameters. It has been suggested that the
complex optical properties of QDQWs cannot be explained on the basis of s states alone [33].
The work on theδ-defect must be extended to cover systems other than HgS. HgS constitutes
a ‘potential well’. One might examine systems which constitute a ‘potential barrier’, e.g.
HgS/CdS/HgS. In our calculations we have been careful to take into account the difference
in effective masses and employed the BenDaniel–Duke boundary condition [28]. In future the
polarization effects due to the difference in dielectric constants must also be examined. Work
on a parallel methodology, preferably the LCAO, must also be initiated. In this connection we
mention that the chalcogen donor in a QD has recently been studied by means of the LCAO
[34]. These extensions should be accompanied by appropriate perturbative, asymptotic, and
scaling analyses, an aspect that we have adhered to in this work.

The field of defects in semiconductor heterostructures is a nascent area. There are
exciting possibilities. The present work suggests some of these possibilities. It outlines the
basic fundamentals and provides a frame of reference for discussing the shallow level and
other defect states in quantum dot–quantum well systems.
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Appendix A. The numerical methodology

We have employed the Runge–Kutta–Fehlberg (RKF) method [35] and checked the result
by means of another scheme, namely the predictor–corrector (PC) approach [36]. The RKF
method is a self-consistent calculation. We first describe the numerical methodology adopted
for solving for the host QDQW. As stated in equation (2.1), the effective-mass Hamiltonian
without the impurity is

H = − h̄2

2
�∇ ·

(
1

m∗(�r)
�∇
)

+ V (�r). (A.1)

There are two layers in the material: a CdS core, surrounded by an HgS layer. The entire
combination is surrounded by a dielectric coating, which provides a finite barrier to the charge
carrier inside the QDQW. The Hamiltonian now reads

H =




− h̄

2m∗
1
∇2 + V1 r � Rd

− h̄

2m∗
2
∇2 Rd < r � Rw

− h̄

2me

∇2 + V2 r > Rw

(A.2)

wherem∗
1, m∗

2, andme are the electron effective mass in CdS, the electron effective mass in
HgS, and the free-electron mass, respectively. Other terms in the above equation are described
in the text. We have applied the BenDaniel–Duke boundary condition (equation (2.4)) at each
interface, i.e. at the CdS–HgS interface and at the HgS–dielectric interface.



Shallow impurities andδ-doping in quantum dot–quantum well systems 8117

For the specific case of our problem, let us take the first of equations (A.2) and demonstrate
the application of the RKF method to this case. For the ground state (l = 0), the equation in
atomic units (defined earlier in the text) will read as

d2ψ

dr2 = (V1 − E)ψ. (A.3)

We have solved the problem on a radial one-dimensional grid. We have used a scheme
which determines the grid size at each step of the calculation, such that a predefined accuracy
in the result is maintained. To attain this, two different orders of the Runge–Kutta method
need to be used. Since the Runge–Kutta method is based on intermediate-function evaluation,
the Fehlberg scheme facilitates the use of exactly the same intermediate functions for the
Runge–Kutta methods of different orders. This makes the task of making such calculations
easier. We have used a fourth-order/fifth-order Runge–Kutta method. Given an initial value
of the wavefunctionψ0 and the first derivative of the wavefunctionψ ′

0 at the initial grid point
r0, the calculation consists in the following steps. First, the following intermediate points
between two grid pointsr0 andr0 + h are defined:

r1 = r0 +
1

4
h (A.4)

r2 = r0 +
3

8
h (A.5)

r3 = r0 +
12

13
h (A.6)

r4 = r0 + h (A.7)

r5 = r0 +
1

2
h. (A.8)

For each of the above points, corresponding wavefunctionsψ are calculated as follows:

ψ1 = ψ0 +
1

4
hf0 (A.9)

ψ2 = ψ0 + h

[
3

32
f0 +

9

32
f1

]
(A.10)

ψ3 = ψ0 + h

[
1932

2197
f0 − 7200

2197
f1 +

7296

2197
f2

]
(A.11)

ψ4 = ψ0 + h

[
439

216
f0 − 8f1 +

3680

513
f2 − 845

4104
f3

]
(A.12)

ψ5 = ψ0 + h

[
− 8

27
f0 + 2f1 − 3544

2565
f2 +

1859

4104
f3 − 11

40
f4

]
(A.13)

wheref0, f1, f2, f3, andf4 are intermediate functions needed for the calculation using the
Runge–Kutta method. The wavefunction derivativesψ ′ are calculated at intermediate grid
points exactly as the wavefunctionψ is calculated above. The only difference is that we will
call the intermediate functions for theψ ′-evaluationg0, g1, g2, g3, andg4, to avoid confusion.
The intermediate functions are evaluated, in accordance with equation (A.3), as follows:

fi = ψ ′
i (A.14)

gi = (V1 − E)ψi (A.15)

wherei = 0, 1, 2, 3, 4.
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The fourth-order Runge–Kutta expression is given by

ψ(r0 + h) = ψ(r0) + h

[
25

216
f0 +

1408

2565
f2 +

2197

4104
f3 − 1

5
f4

]
(A.16)

and the fifth-order Runge–Kutta expression is given by

ψ̂(r0 + h) = ψ(r0) + h

[
16

135
f0 +

6656

12 825
f2 +

2856

56 430
− 9

50
f4 +

2

55
f5

]
. (A.17)

The same holds forψ ′ too. The solution of the differential equation is the one given by the
fourth-order formula, whereas the fifth-order equation with the fourth-order equation is used
to determine the grid size for the next step of the calculation. The difference between the two
solutions obtained is the measure of error. To keep this error at some predetermined level, a
new grid size is calculated for the next step and the process is continued up to the last grid
point. The grid size in the Fehlberg method is calculated using the following scheme:

hnew = h 4

√
hε∣∣ψ(r0 + h) − ψ̂(r0 + h)

∣∣ (A.18)

wherehnewis the new grid size,h is the previous grid size, andε is the desired accuracy.ψ and
ψ̂ are the Runge–Kutta fourth-order and fifth-order solutions, respectively, of the Schrödinger
equation. The new grid size is calculated after the calculation of both the wavefunctionψ and
ψ ′. The one which is smaller is accepted for the next step. Hence the grid size for the next
step is calculated within the desired accuracy by an inbuilt mechanism in the program.

We first solve the problem with a CdS layer. Then we introduce the HgS well in the
problem. This leads to lowering of the eigenvalue obtained earlier. This we find is the faster
way of solving the problem. We start the program far outside the QDQW, where we have
assumed the wavefunction and its derivative to be zero. The program then runs in several
iterations, until it finds a partial wavefunction, which is close to zero at the origin within
some predefined accuracy. It accepts this solution, as both of the boundary conditions (that
the partial wavefunction has to be zero at the origin and far outside) are satisfied. The same
process is repeated for all sizes of the QDQW.

The program is run up to the last grid point before the interface. The wavefunction
derivative is then multiplied by the ratio of masses across the interface (β = mi/mo) and the
program propagates to the grid point inside the next layer. In this way the BenDaniel–Duke
condition (equation (2.4)) is incorporated:

ψ ′(ri) = βψ ′(ri ) (A.19)

wherei represents the grid point at the interface.
We have used the Adams–Bashforth–Moulton scheme [36] for the predictor–corrector

method that we have used. The grid size is chosen after several runs. It is such that the
program converges quickly and gives accurate results. The grid size ofRw/100 everywhere
except at the interface, where it is chosen to beRw/100, works well for the QDQW sizes
under consideration.

Next we introduce an impurity potential−e2/εr in the QDQW (see equation (2.1)). A
logarithmic mesh is used in order to capture the physics near the impurity centre with fidelity.
The numerical approach taken is similar to the one outlined above.
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